Cite this: Org. Biomol. Chem., 2012, 10, 2793

www.rsc.org/obc

PAPER

Silver-promoted Friedel-Crafts reaction: concise total synthesis of (-)-ardeemin, (-)-acetylardeemin and (-)-formylardeemin

Y. Wang,^a C. Kong,^a Y. Du,^a H. Song,^{*a} D. Zhang^b and Y. Qin^{*a,b}

Received 3rd January 2012, Accepted 30th January 2012 DOI: 10.1039/c2ob00014h

Total syntheses of multidrug resistant inhibitors (-)-acetylardeemin 2a, (-)-ardeemin 2b, and (-)-formylardeemin 3 have been achieved within 10 steps starting from bromopyrroloinoline 13. The key step involves direct alkylation of 13 with prenyl tributylstannane 11 to yield 12 via a silver-promoted asymmetric Friedel-Crafts reaction. Highly efficient installation of the isoprenyl group allowed excellent overall yield. Moreover, the substrate scope of the asymmetric Friedel-Crafts reaction of 13 was expanded to include a variety of arenes 14 to afford natural product-like library analogues 15.

Introduction

Alkaloids bearing a pyrroloindoline (1) skeleton substituted on $C3\alpha$ with a heteroatomic, alkyl or aromatic moiety form a major class of indoline alkaloids with a broad range of potent biological activities (Fig. 1).¹ Although several methods for constructing C3 α -substituted pyrroloindoline 1 have been developed in recent years,^{2,3} they involve multi-step procedures. A more concise methodology for assembling C3a-substituted pyrroloindoline 1 is highly desirable (Fig. 1).

(-)-Acetylardeemin 2a and (-)-ardeemin 2b were isolated from the extracts of the fungus Aspergillus fischerii in 1993.⁴ (-)-Acetylardeemin 2a is one of the most potent inhibitors of multidrug resistance (MDR, Fig. 1).⁵ The high anti-MDR activity of 2a has drawn the attention of synthetic chemists, which led to the development of three total syntheses by Danishefsky,⁶ Kawasaki,⁷ and our group.⁸ SAR studies based on our total synthesis of 2 found that the synthesized (-)-formylardeemin 3 (Fig. 1) inhibited MDR cancer cell lines to a similar extent as the natural 2a.9 Indeed, in vitro experiments show that 3 at low μ M doses significantly sensitizes the multi-drug resistant breast cancer cell lines MCF-7-R and cervical cancer cell lines Siha to vincristine- or adriamycin-induced cell death. In our previous synthesis of 2 and 3 in 20 steps with about 2% overall yield,⁸ the stereoselective installation of the isoprenyl group to give intermediate 7 from L-tryptophan took 9 steps (eqn (1),

C3a substituted pyrroloindoline (1)

(-)-acetylardeemin (2a), R =Ac (-)-ardeemin (2b), R = H

Fig. 1 Structures of ardeemins.

Fig. 2 Strategies for alkylation or arylation of pyrroloindoline at C3a.

Fig. 2). Such tedious preparation of 7 hampered efforts to obtain a large quantity of 2 and 3 for further preclinical studies.

Inspired by Danishefsky's pioneering work on direct C3a alkylation of the phenylselenopyrroloindoline 10 with prenyl tributylstannane 11 to provide 12 via Lewis acid-catalyzed nucleophilic substitution (eqn (2), Fig. 2),⁶ we envisioned a similar strategy of direct isoprenylation of bromopyrroloindoline 13 with 11 to afford 12 via a Friedel-Crafts reaction. This would significantly improve the synthesis of 2 and 3, since 13 is readily prepared in high yield from the inexpensive L-tryptophan derivative

^aKey Laboratory of Drug Targeting of Ministry of Education, West China School of Pharmacy, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, P. R. China. E-mail: yongqin@ scu.edu.cn; Fax: (+86) 28 85503842; Tel: (+86) 28 85503842 ^bInnovative Drug Research Center and College of Chemistry and Chemical Engineering, Faculty of Arts and Sciences, Chongqing University, Chongqing 401331, P. R. China. E-mail: qinyong@cqu.edu. cn; Fax: (+86) 23 65678750; Tel: (+86) 23 65678750

EntrySaltsAdditiveTemp. (°C)Yield ^b (%)1 Ag_2CO_3 4042 AgF 4093 $AgCO_2CF_3$ 4074 $AgSO_2Tol$ 4055 $AgSO_2CF_3$ 40186 $AgCO_2(CF_2)CF_3$ 40337 $AgSbF_6$ 40408 $AgBF_4$ 40459 $AgCIO_4$ 404710 $AgCIO_4$ LiCIO_4-407011 $AgCIO_4$ KF-406912 $AgCIO_4$ CsF-408115 $AgCIO_4$ Cs2CO_3-789316 ^c $AgCIO_4$ Cs2CO_3-789117 ^d $AgCIO_4$ Cs2CO_3-7882	Br	NBoc +	√ ^{SnBu} 3 cc 1	Ag ⁺	COOMe NBoc NBoc 12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry	Salts	Additive	Temp. (°C)	Yield ^b (%)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16^c\\ 17^d\\ 18^{ce}\\ 19^{cf}\\ 20^{cg}\\ 21^{ci}\\ 19^{ci}\\ 19^{ci}\\ 19^{ci}\\ 21^{ci}\\ 19^{ci}\\ 21^{ci}\\ 21^{$	$\begin{array}{c} Ag_2CO_3\\ AgF\\ AgCO_2CF_3\\ AgSO_2Tol\\ AgSO_2Tol\\ AgSO_2CF_3\\ AgCO_2(CF_2)CF_3\\ AgSbF_6\\ AgBF_4\\ AgCIO_4\\ AgCIO_4\\$		$\begin{array}{c} -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -40 \\ -78 \\$	$ \begin{array}{c} 4\\ 9\\ 7\\ 5\\ 18\\ 33\\ 40\\ 45\\ 47\\ 70\\ 69\\ 77\\ 66\\ 81\\ 93\\ 91\\ 82\\ 60\\ <20\\ 90^{h}\\ 87^{h}\\ 6\end{array} $

^{*a*} Unless otherwise noted, reactions were performed with 1 equiv. of **13**, 1.5 equiv. of **11**, 3 equiv. of silver salts, 1.5 equiv. of additive in CH₂Cl₂. ^{*b*} Isolated yield. ^{*c*} 2 equiv. of AgClO₄ and 1.5 equiv. of Cs₂CO₃ were used. ^{*d*} 1.2 equiv. of AgClO₄ and 1.5 equiv. of Cs₂CO₃ were used. ^{*e*} Et₂O was used as a solvent. ^{*f*} 1,2-Dimethoxythane or THF was used as solvent. ^{*g*} Toluene was used as solvent and a reactant. ^{*h*} Compound **15a** was isolated as sole product. ^{*f*} 3 equiv. of toluene were used as a reactant, and CH₂Cl₂ was used as solvent.

8 and NBS in a single step (eqn (3), Fig. 2).¹⁰ In the meantime, Movassaghi¹¹ and Stephenson¹² recently made great progress on direct arylation of bromopyrroloindolines on C3 α *via*, respectively, a silver-catalyzed Friedel–Crafts reaction with potassium aryltrifluoroborates and rhodium-catalyzed radical coupling with unfunctionalized arenes mediated by visible light. These promising results further encouraged us to complete the planned project.

In this paper, we describe a concise total synthesis of (–)-acetylardeemin **2a**, (–)-ardeemin **2b** and (–)-formylardeemin **3**, which involves highly efficient, single-step asymmetric attachment of an isoprenyl group on C3 α of the easily accessible **13** *via* a silver-promoted Friedel–Crafts reaction. We also report the direct asymmetric arylation of **13** with a variety of arenes **14** to give natural product-like library analogues.

Results and discussion

To study the direct asymmetric isoprenylation of **13** with **11**, a variety of silver salts were screened, including Ag_2CO_3 , AgF, $AgCO_2CF_3$, $AgSO_3Tol$, $AgSO_3CF_3$, $AgCO_2(CF_2)_2CF_3$, $AgSbF_6$, $AgBF_4$ and $AgClO_4$. Among the salts tested, $AgClO_4$ afforded the desired **12** as sole product with the highest yield of 47% within 10 h under conditions of 3 equiv. of salts, 1.5 equiv. of **11**

Scheme 1 Silver-promoted C3 α arylation of **13**.

in CH₂Cl₂ at -40 °C (entries 1–9, Table 1). In order to improve the yield, several bases such as LiClO₄, KF, CsF, K₂CO₃ and Cs₂CO₃ were individually tested as additives under identical conditions (entries 10–14, Table 1). To our delight, the reaction was significantly promoted by addition of 1.5 equiv of base. Cs₂CO₃ gave the best result with 81% yield. Lowering the temperature from -40 °C to -78 °C improved the yield to 93% (entries 14–15, Table 1). Further optimization of the amount of AgClO₄ (entries 15–17, Table 1) gave the best conditions as 2 equiv. of AgClO₄, 1.5 equiv. of **11**, and 1.5 equiv. of Cs₂CO₃ at -78 °C. Under optimal conditions, we easily prepared the key intermediate **12** from **13** in 91% yield in a single step, allowing the total synthesis of **2** and **3**.

Changing the solvent from CH_2Cl_2 to ethereal solvents such as Et_2O , DME and THF caused significant loss of yield (entries 16, 18–19, Table 1). Surprisingly, when toluene **14a** was used as the solvent, an unexpected arylated product **15a** was isolated as sole product in excellent yield (entry 20, Table 1 and Scheme 1). Interestingly, arylation of **13** with only 3 equiv. of toluene **14a** and 2 equiv. of AgClO₄ in CH_2Cl_2 at -78 °C still provided **15a** in 87% yield. Reevaluation of AgBF₄ (2 equiv.) under the above arylation conditions showed that AgBF₄ promoted the reaction with better yield (92%) than did AgClO₄ (87%, entries 21 and 22, Table 1) in the presence of 3 equiv. of toluene **14a** in CH_2Cl_2 .

Since pyrroloindoline 1 arylated on C3 α belongs to a subclass of indoline alkaloids,¹³ the discovery of efficient arylation of **13** with toluene encouraged us to investigate the general reactivity of 13 with a variety of arenes under the same conditions (1.0 equiv of 13, 3 equiv. of arene 14, 2 equiv. of AgBF₄, 1.5 equiv. of Cs₂CO₃ at -78 °C). As shown in Table 2, we were pleased to find that the reaction of 13 with electron-neutral and electronrich arenes 14 proceeded smoothly to give 15 in moderate to excellent yields (entries 1-16, Table 2), whereas the reaction with electron-deficient arenes such as pyridine 14g and nitrobenzene 14r failed (entry 17, Table 2). All the tested arenes 14 reacted with 13, providing the corresponding products 15 with excellent regioselectivities, except naphthalene 14c and Nmethylindole 14m. These results are consistent with the ortho/ para directing effect that governs the regioselectivity of the Friedel-Crafts reaction at lower temperature.

A reasonable mechanism for the C3 α Friedel–Crafts reaction is suggested in Scheme 2. Treatment of 13 with silver salts generates a conjugated carbocation 16 at low temperature, which then reacts with the nucleophilic prenyl tributylstannane 11 and arenes 14 to provide *cis*-12 or *cis*-15. Isolation of the hydroxyl product 17 proves that the reaction proceeds through the carbocation 16 when 13 reacts with AgClO₄ alone at -78 °C in CH₂Cl₂ for 2 h, after which the reaction was quenched with saturated NH₄Cl solution. The observed excellent stereoselectivity of the Friedel–Crafts reaction at the C3 α linkage is mainly due to

Table 2 AgBF₄-promoted C3 α arylation of 13⁴ AgBF4/Cs2CO COOMe CH2Cl2, -78°C N Boc N Boo N Roc 14 13 15 Yield^{b} (%) Entrv ArH Ar 1 92 Me Me 15a 14a Me Me 2 89 14b 15b 3 80° 140 15c 4 72 MeC MeC 14d 15d MeC MeC 5 68 MeO 14e 15e 6 62 141 15f 7 80 MeO MeO 14g 15g OMe MeC MeC OM 8 91 MeO 14h 15h 90 9 AcHN AcHN 14i 15i 10 67 F₃CCHN F₂CCHN 14j 15j MeO MeO. 11 53 AcHN AcHN 15k 14k .OPh 12 44 14 151 13 46^d Мe Ме 14m 15m 14 31^e 14n 15n 94^e 15 15o 14c 49 16 15r

Scheme 2 Proposed mechanism for direct C3α substitution of 13.

the existing tricyclic ring system in 16, which excludes a nucleophilic attack occurring from the lower face of the indoline ring to produce the high energy-barrier *trans*-12 or *trans*-15 with two *trans*-fused five-membered rings. Therefore, the nucleophile attacks exclusively on the upper face of the indoline ring, yielding *cis*-12 or *cis*-15 with excellent stereoselectivities at C3 α .

Having developed an efficient method to stereoselectively assemble the isoprenyl group on the pyrroloindoline skeleton, we progressed toward the total synthesis of (-)-formylardeemin 3, (-)-ardeemin 2b and (-)-acetylardeemin 2a from 12. As shown in Scheme 3, removal of both Boc groups from 12 with TMSI provided 18 in 90% yield. In our previous total synthesis, the D-ring was constructed from a pyrroloindoline intermediate and an *D*-alanine fragment in consecutive steps, in which the C15α-N9 amide bond was first linked, and then the C7-N6 amide bond was formed. In the second step of C7-N6 amide bond formation, activation of an acid group on C7 with $ClCO_2^{1}Bu-Et_3N$ inevitably caused epimerization at C8 (1:1) due to formation of an active ketene functional group. In the current synthesis, epimerization at C8 during D-ring formation was avoided by first linking the C7-N6 amide bond, then forming the C15 α -N9 amide bond. Thus, condensation of 18 with N-Fmoc-protected D-alanine 19 in the presence of HATU and Et₃N in DMF afforded a mixture of the rotamers 20a and 20b in a 1:1 ratio and 80% yield. Without separation of 20a and **20b** from each other, the mixture was methylated with 37% aqueous HCHO and NaBH₃CN in MeCN and AcOH (10:1) to give a mixture of rotamers **21a** and **21b** in a 1 : 4 ratio and 90% yield. The rotameric effects ascribed to the amide bonds in 20 and 21 were eliminated when the D-ring was formed by removal of the Fmoc group in 21 in the presence of Et₂NH in THF. Compound 22 was isolated as a single stereoisomer in 93% yield. As expected, epimerization at C8 was effectively avoided by reversing the order of amide bond formation and varying reaction conditions for D-ring formation.

To form the E-ring, we adopted a strategy similar to our previous synthesis.⁸ Condensation of **22** with *o*-azidobenzoic anhydride in the presence of n-BuLi in THF at -78 °C provided azido **23** in 92% yield. Treatment of **23** with n-Bu₃P in toluene afforded **23** in 86% yield. The final step of oxidizing the methyl group in **24** with PDC completed the total synthesis of (–)-formylardeemin **3**. Deformylation of **3** with aqueous NaOH in MeOH at 60 °C provided (–)-ardeemin **2b** in 85% yield. (–)-Acetylardeemin **2a** was obtained from **2b** using a published procedure.⁶

^{*a*} Reactions were performed with 3.0 equiv. of ArH (14), 2.0 equiv of AgBF₄, 1.5 equiv. of Cs₂CO₃ at -78 °C in CH₂Cl₂ for 10 h. ^{*b*} Isolated yield. ^{*c*} The ratio of α -substituted product : β -substituted product was 1 : 3. ^{*d*} The C2 linked product 15m was isolated in 46% yield. Other products linked at different positions of the indoline core were isolated in 38% total yield, but they could not be separated from each other by chromatography and so could not be individually identified. ^{*e*} Sole product isolated.

√_NO₂ 14r

14q

0

17

Scheme 3 Reagents and conditions: (a) TMSI, MeCN, 0 °C, 90%; (b) 19, HATU, Et₃N, DMF, -20 °C, 20a : 20b 1 : 1, 80%; (c) 37% aqueous HCHO, NaBH₃CN, MeCN–AcOH (10 : 1), 25 °C, 21a : 21b 1 : 4, 90%; (d) Et₂NH, THF, 0 °C to rt, 93%; (e) n-BuLi (2.5 M in THF), *o*-azido-benzoic anhydride, THF, -78 °C, 92%; (f) n-Bu₃P, toluene, 1 h, 86%; (g) PDC, silica gel, CH₂Cl₂ at rt, 80%; (h) 8% aqueous NaOH in MeOH, reflux 8 h, 85%. TMSI = trimethylsilyl iodide; HATU = 2-(1*H*-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate methanaminium; PDC = pyridinium dichromate.

Conclusions

In summary, a concise total synthesis of (-)-formylardeemin 3 has been accomplished from bromopyrroloindoline 13 with 36% overall yield in 8 steps. (-)-Ardeemin 2b was readily prepared from 3 by simple deformylation. (-)-Acetylardeemin 2a was prepared from 2b by a single step of acetylation. The key step in the total synthesis was a silver-promoted asymmetric Friedel-Crafts reaction of 13 with prenyl tributylstannane 11 to give 12. Highly efficient installation of the isoprenyl group on the pyrroloinoline skeleton greatly enhanced the synthetic efficiency over the previous synthesis and allowed us to shorten the synthesis of **3** from 20 steps to 8 steps. Moreover, the substrate scope of the asymmetric Friedel-Crafts reaction of 13 was expanded to include a variety of arenes 14 to afford natural product-like library analogues 15a-15p. The current synthesis provides a practical approach to large-scale synthesis of (-)-acetylardeemin 2a and (-)-formylardeemin 3 for preclinical studies.

Experimental

General methods

All commercially available reagents were used without further purification. All solvents were dried and distilled before use; toluene was distilled from sodium; THF was distilled from sodium–benzophenone ketyl; dichloromethane, acetonitrile and *N*,*N*-dimethylformamide were distilled from calcium hydride. Chromatography was conducted by using 200–300 mesh silica

gel. All new compounds gave satisfactory spectroscopic analyses (IR, ¹H NMR, ¹³C NMR, HRMS). IR spectra were recorded on a FT IR spectrometer. NMR spectra were recorded on a 400 MHz NMR spectrometer. HRMS spectra were obtained by the FAB method.

Procedure for synthesis of 12^{6a}

To a solution of the bromopyrroloindoline 13 (10.0 g, 20.1 mmol), Cs₂CO₃ (9.8 g, 30.2 mmol) and prenyl tributylstannane (10.9 g, 30.2 mmol) in 300 mL of anhydrous CH₂Cl₂ at -78 °C under nitrogen was added AgClO₄ (8.3 g, 40.2 mmol). After stirring at -78 °C for 16 h, the reaction was quenched with 150 mL of saturated NH₄Cl solution and then extracted with CH_2Cl_2 (3 × 200 mL), the combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash chromatography (ethyl acetate-petroleum 1:15) to afford compound 12 (8.8 g, 91%) as a white solid. Mp: 143–145 °C; $[\alpha]_{D}^{20} = -72.1$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) & 0.92 (s, 3H), 1.02 (s, 3H), 1.46 (broad s, 9H), 1.55 (s, 9H), 2.25–2.30 (m, 1H), 2.35–2.40 (m, 1H), 3.70 (s, 3H), 3.80 (dd, J = 10, 6.8 Hz, 1H), 4.98-5.08 (m, 2H), 5.86 (dd, J = 17.2)10.8 Hz, 1H), 6.16 (s, 1H), 7.05 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 7.2 Hz, 1H), 7.25 (t, J = 8.8 Hz, 1H), 7.38 (broad s, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ 21.7, 22.5, 27.9, 34.9, 39.8, 51.5, 58.9, 61.3, 78.0, 80.7, 113.9, 117.0, 118.1, 123.0, 124.2, 128.1, 133.3, 142.7, 151.7, 172.0 ppm; HRMS (M + H⁺) calcd for C₂₇H₃₉N₂O₆ 487.2808, found 487.2816; IR (KBr) 2980, 2932, 1760, 1710, 1481, 1400, 1260, 1155, 1018 cm⁻¹.

General procedure for preparation of 15

Bromopyrroloindoline **13** (1.007 g, 2.0 mmol), Cs_2CO_3 (0.977 g, 3.0 mmol) and **14** (6.0 mmol) were dissolved in 50 mL of anhydrous CH_2Cl_2 under N_2 at -78 °C, then AgBF₄ (0.778 g, 4.0 mmol) was added. After complete consumption of **13**, 50 mL of saturated NH₄Cl solution was added to quench the reaction. The reaction mixture was extracted with CH_2Cl_2 (3 × 60 mL). The combined organic layers were dried over Na₂SO₄, and the solvents were removed under reduced pressure. Purification by silica gel chromatography (ethyl acetate–petroleum) provided **15**. Individual isolated yield of **15a–15p** was shown in Table 2.

Acknowledgements

This research was supported by NSFC (20825207, 21002066, and 21021001), PCSIRT (IRT0846), the National Basic Research Program of China (973 program, 2010CB833200), and the National Science and Technology Major Project of China (2011ZX09401-304).

Notes and references

- For a recent review on the structure, biological activities and synthesis of pyrroindoline alkaloids, see: P. Ruiz-Sanchis, S. A. Savina, F. Albericio and M. Álvarez, *Chem.-Eur. J.*, 2011, **17**, 1388.
- 2 For the syntheses of pyrroloindolines substituted with heteroatoms on C3α, see: (a) T. M. Kamanecka and S. J. Danishefsky, *Angew. Chem.*, *Int. Ed.*, 1998, **37**, 2993; (b) T. M. Kamanecka and S. J. Danishefsky,

Angew. Chem., Int. Ed., 1998, **37**, 2995; (c) T. Newhouse and P. S. Baran, J. Am. Chem. Soc., 2008, **130**, 10886; (d) V. R. Espejo and J. D. Rainier, J. Am. Chem. Soc., 2008, **130**, 12894; (e) T. Newhouse, C. A. Lewis and P. S. Baran, J. Am. Chem. Soc., 2009, **131**, 6360; (f) Y. Fukui and M. Somei, Heterocycles, 2001, **55**, 2055; (g) H. Takayama and P. S. Baran, Angew. Chem., 2011, **123**, 2768; (h) V. R. Espejo and J. D. Rainier, Org. Lett., 2010, **12**, 2154.

- 3 For the syntheses of pyrroloindolines substituted with alkyl and aromatic groups on C3a, see: (a) A. Steven and L. E. Overman, Angew. Chem., Int. Ed., 2007, 46, 5488; (b) A. Schmidt and M. Movassaghi, Synlett, 2008, 313; (c) D. Crich and A. Banerjee, Acc. Chem. Res., 2007, 40, 151; (d) V. R. Espejo, X. B. Li and J. D. Rainier, J. Am. Chem. Soc., 2010, 132, 8282; (e) J. Kim and M. Movassaghi, J. Am. Chem. Soc., 2010, 132, 14376; (f) L. E. Overman and D. V. Paone, J. Am. Chem. Soc., 2001, 123, 9465; (g) J. F. Austin, S. G. Kim, C. J. Sinz, W. J. Xiao and D. W. C. MacMillan, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5482; (h) L. M. Repka, J. Ni and S. E. Reisman, J. Am. Chem. Soc., 2010, 132, 14418; (i) S. Ma, X. Han, S. Krishnan, S. C. Virgil and B. M. Stoltz, Angew. Chem., Int. Ed., 2009, 48, 8037; (j) A. Huang, J. J. Kodanko and L. E. Overman, J. Am. Chem. Soc., 2004, 126, 14043; (k) B. M. Trost and Y. Zhang, J. Am. Chem. Soc., 2006, 128, 4590; (1) R. Fuchs and R. L. Funk, Org. Lett., 2005, 7, 677; (m) J. Kim, J. A. Ashenhurst and M. Movassaghi, Science, 2009, 324, 238.
- 4 (a) T.-C. Chou, K. M. Depew, Y.-H. Zheng, M. L. Safer, D. Chan, B. Helfrich, D. Zatorska, A. Zatorski, W. Bornmann and S. J. Danishefsky, *Proc. Natl. Acad. Sci. U. S. A.*, 1998, **95**, 8369; (b) J. P. Karwowski, M. Jackson, R. R. Rasmussen, P. E. Humphrey, J. B. Poddig, W. L. Kohl, M. H. Scherr, S. Kadam and J. B. McAlpine, *J. Antibiot.*, 1993, **46**, 374; (c) J. E. Hochlowski, M. M. Mullally, S. G. Spanton, D. N. Whittern, P. Hill and J. B. McAlpine, *J. Antibiot.*,

1993, **46**, 380. Nomenclature and atom numbering used in this paper are the same as in ref. 4c.

- 5 I. B. Robinson, in *Molecular and Cellular Biology of Multidrug Resistance in Tumor Cells*, ed. I. B. Robinson, Plenum Press, New York, 1991.
- 6 (a) K. M. Depew, S. P. Marsden, D. Zatorska, A. Zatorski, W. G. Bornmann and S. J. Danishefsky, *J. Am. Chem. Soc.*, 1999, **121**, 11953; (b) S. P. Marsden, K. M. Depew and S. J. Danishefsky, *J. Am. Chem. Soc.*, 1994, **116**, 11143.
- 7 S. Takiguchi, T. Iizuka, Y. Kumakura, K. Murasaki, N. Ban, K. Higuchi and T. Kawasaki, J. Org. Chem., 2010, 75, 1126.
- 8 B. He, H. Song, Y. Du and Y. Qin, J. Org. Chem., 2009, 74, 298.
- 9 Y. Qin, Y. Lin, X. Wang, B. He, H. Song, X. L. Zheng and L. Zhang, Chinese Patent Appl, No. 200910164330.3.
- 10 C. S. López, C. Pérez-Balado, P. Rodríguez-Graña and A. R. Lera, Org. Lett., 2008, 10, 77.
- 11 J. Kim and M. Movassaghi, J. Am. Chem. Soc., 2011, 133, 14940.
- 12 L. Furst, J. M. R. Narayanam and C. R. J. Stephenson, Angew. Chem., Int. Ed., 2011, 50, 9655.
- 13 For reviews on indoline alkaloids arylated on C3α, see: (a) U. Anthoni, C. Christophersen and P. H. Nielsen, in *The Alkaloids: Chemical and Biological Perspectives*, ed. S. W. Pelletier, Pergamon, New York, 1999, vol. 13, pp. 163–236; (b) G. A. Cordell and J. E. Saxton, in *The Alkaloids: Chemistry and Physiology*, ed. R. H. F. Manske and R. G. A. Rodrigo, Academic Press, New York, 1981, vol. 20, pp. 3–295; (c) T. Hino and M. Nakagawa, in *The Alkaloids: Chemistry and Pharmacology*, ed. A. Brossi, Academic Press, New York, 1989, vol. 34, pp. 1–75; (d) T. S. Pvenet and J. Pusset, in *The Alkaloids: Chemistry and Pharmacology*, ed. A. Cordell, Academic Press, New York, 1989, vol. 34, pp. 1–75; (d) T. S. Pvenet and J. Pusset, in *The Alkaloids: Chemistry and Pharmacology*, ed. A. Cordell, Academic Press, New York, 1996, vol. 48, pp. 1–73.